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Our ultimate aim is to exploit the nearness to Gaussianity of

velocity probability distributions in turbulence, by expanding the velocity

field function about the Gaussian approximation. Many of the mathematical

manifestations of our method are so new, however, that it is hard to obtain

physical insight into them. Hence, we have undertaken a preliminary, pilot

project of a simplified nature, which uses instead of the Navier-Stokes or

NO equations the Burgers one-dimensional model equation: 1

x22) + au V o (1)

The expansion is in terms bf" Wiener-Ifermite sUreton23 .

u(x,t) = f K(l)(x-x )H(1)(x 1 ) dx+ If K(2)(x-xl,x-x 2 )H(2)(Xl,x2 )dxl dx2+ (2)

The K(i), which are implicitly functions of t = time, are ordirnary (non-

random) functions. Integrations are over (- -,-). The H(W) are the

Wiener-Hermite functionals as defined in Reference 4. They are random

functions, whose salient properties are (a) their muitual statistical.

orthogonality, expressed by such relations as

KH(i) a~j)> =0 if i 4 J, KB(l)(. 1  H(l)(, 2) > = &(x1-x9), etc.;

(b) H(l) is the "ideal random function or derivative of the Wiener

function6 ',7, whence the first term of (2) is a Gaussian function, and the

later terms are in some sense successively higher corrections to Gaussiarnity;

(c) the expansion is rigorously convergent for a broad class of random
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functions, hence should converge rapidly whenever the velocity distribution

is approximately Gaussian, which is particularly the case in the final

stage of turbulence.

If this expression for u(x,t) is substituted into (i), one can

obtain from the statistical orthogonality relations an infinite set of

equations relating the K (i). When the KW are Fourier-transformed

according to- the relation

K(i)(,,,...xx,) = 1 e f• ... d ...dX

these equations become

K(l)(X) +,- )2c(l)() + ... = 0 (4)

SK(X1,X2) ÷v• )ic2(x, 2) - • %+ 9~ ) (¢ +"... 0 (5)

2( ) ,, + % 1 +z 2 +•)2K()/l,2, 3) -

S(z1÷I 2÷•)[K(1)(z9K(2)(%2 , Z ) + K(1)(c)K(2)(X3 ,v.1 ) ÷

• , + ... = o (6)

The dots in equations (4) through (6) stand for an infinite

number of terms, involving kernels with higher indices; for example,

equation (4) contains a term - 2iZK(K). K(2)), where the inner product is

defined as

(KOl). K(2)) 1f K(')(-)K(2)(Z', i d(

Formalizing the assumption that the series (2) converges rapidly,

we assign to such inner products (subject to verification) an order of
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smallness equal to the sum of the subscripts. Thus, the terms given

explicitly in equation (4) are of first order, the omitted term just cited

is of third order, and all others are of still higher order. If we retain

only the terms written down in equations (4) through (6), we have approxi-

mate relations, homogeneous in order of smallness, which determine

(subject to initial conditions) each of the first three kernels to lowest

order.

As initial conditions we assume

K(l)(T) It.o i A.m e 2 (8)

K:2C •,) t.o- i •(1 X)ne 1+_ (9)

1. 2)2

SIt. i c("1+7(2+÷)p e- 2 3 (10)

where A, B, and C are constants. These conditions are "initial" ones only

when considered relative to a stage of decay late enough to be character-

izable by a single correlation length 1 . The exponentials are character-

istic forms for the late decay of the diffusion-like equations (4) to

(6)8. The term V=, (÷+ %2)n "" are presumably the leading terms of

Taylor expansions, and a, n are assmed IstoUsI, 0e via". *at a - 0 leads

to (K(2):K(2)) (double inner product) constant in time, which means a

non-decaying mean velocity, which is physically untenable. The choice

m = 1 leads to (K(2):K(2)) decaying and at the same rate as (K(l).K(2)).

As our starting point we chose m - n w p - 1. We have integrated

equations (4) - (6) (we omit the expressions for the K's so obtained, for

lack of space) and obtained some simply interpretable results from them:
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The omitted terms in the equations of the K i), M hen evaluated

in terms of these approximate solutions, decay, relatively to those re-

tained, as tl1/2 or faster. This guarantees the self-consistency of

omitting them. (This result is obtained by simple dimensional analysis

of the expressions involved.)

The distribution approaches a Gaussian one in time: the flatness

factor of the one-point distribution is, in terms of the KW, and to the

present order of approximation,

(•(l)K(l)K(l):K(3)) + 2 (()(2) (2)1(K(1).Xl))2 ) K .K (11

The fraction in the second term, apart from the factor 24, is a measure

of the relative deviation from Gaussianity ("R.D.G."), which we denote

by $. The present assumptions lead to $ decaying as t"/2. (It is impor-

tant to note that, contrary to what one might think, this is consistent

with the equal rates of decay mentioned above for (K(2):K(2)) and (K(1)'K(l).

As a venture in investigating the predictive value of the inherent

mathematical structure of the R.D.G. in this scheme, we undertook to evaluate

the R.D.G. for space derivatives of the velocity field. As is well known,

in turbulence experiments, this quantity is positive and increases strik-

ingly with the order of the derivative9 . If On denotes the R.D.G. of the

nth derivative,

n A T/2 no +a on + a2 n2 + b n 3  (12

where are m•irical quantities obtained from the K(i) and
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a =,4P B/A2 - 1 (13)

b = 1 - 121) B/A 2 - 24P2 C/A 3  (114)

Computed values of the $nj j = 0, 1, 2, 3 are given in the table below:

n n0 Onl On2 n

0 4.3 4.9 ,4.5 -. 7_5

1 7.1 6.4 -2.

2 14.3 8.9 5.9. -4.5_
3 2o.6 12.8 6.2 -10.0

Ia- t".u Ing the•e.eae tLta. wc rapq•pe that f() has been made

dimensionless, u being measured in units of u = A3/2, x in units of 1,

t in units of 1/u 0 ; then -W is R"1 where R = Uo1/P , the Reynolds number

at t = 0. The asymptotic result given in (12) requires times larger than

the Reynolds number. Although it is hoped that the representation used

here will be useful in the description of flows during times when the

Reynolds number is large, we content ourselves here with a regime where

the Reynolds number is small or of order unity. In such a case "1 is

large or of order unity and the correction 0n is small if iVt>l. Here

a and b may take on various values, difficult to determine from the present

state of the theory. In general, for reasonable choices of A, B, and C

the deviation from Geussianity increases with increasing order of the

derivative. For instance, it is easily seen that there is an increase

if C - 0, and 4 V B/A2 )>. This choice represents the situation where

at the initial instant (of course after the flow has decayed as described

above) K 0, and K(2) is order unity or small but not zero. This
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increase in non-Gaussianity with order of the derivative in observed

experimentally for real fluid flow9 although for far shorter decay times.

It is interesting to compare these results with calculations which have

been made of the statistical characteristics of solutions of (1) by

10Yoomaw . He finds that the correction to the Gaussian value for the

flatness factor is proportional to t"1/2 also; however, the dependence on

the Reynolds number is different. In the main, these results are en-

couraging and suggest that the stochastic representation used here may

be useful in the treatment of turbulence problems.
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